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ABSTRACT

TECCNET (Testbed for Evaluating Command and Control
NETworks) is a small, expandable software system created to
support C3 system research. It has been designed 1) to highlight
the complex interactions between the distributed command and
control network elements, the information flow network and the
environment within which the systems function, and 2) to support
the development of an Information Intermediary between the C3
Network and the User. TECCNET is interactive and accommodates
three basic user activities: definition of a model to simulated,
generation of a scenario, and execution of an experiment. An
initial modeling environment has been specified to simulate the
management of the network. The algorithm used to demonstrate the
system is one proposed by Golestaani as part of his PhD research,
which treats flow control and routing together within a unified
framework.
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I. INTRODUCTION

1.1 INFORMATION FLOW IN C3 SYSTEMS

The need to limit the flow of information in a Command,

Control, and Communications (C3) system operating under stress,

while preserving its effectiveness in the context of changing

military situations, has become increasingly critical. It is

this need that has provided the motivation for both the research

activity and the development of the research support system

described in the report that follows.

1.1.1 Backgound

In this work, the C3 system is visualized as an

information flow network. This description encompasses not only

the communications systems that transmit data and messages, but

also the processing and storage systems that acquire, translate,

manipulate, and disseminate information. The performance of this

network may be described (at least conceptually) in terms of its

ability to deliver, at designated points, the desired information

so that, upon arrival, it is timely, accurate, complete, and easy

to use.

It is clear that the underlying C3 system problem is

extremely complex. The system elements that comprise the

information flow network are highly distributed, have diverse

physical characteristics, and are often governed by ill-defined

- ~ ~ ~ ~ ~ - - - - - - -~~~~~



operational constraints and procedures. The technologies that

affect the elements of this system are changing rapidly;

advances in electronic weaponry, sensors, and computers, for

example, combine with changes in the way information is used by

the commander to increase both the flow of information in the

network and the time pressures associated with its delivery.

Even under somewhat benign conditions, the task of

supporting this flow of information is a formidable one.

However, when the tactical situation intensifies, the load on the

system increases substantially, just when the external stress on

the network induced by a hostile atmosphere is at its peak.

Competition for the same resources to move, process, store, and

display information also intensifies -- with frequently

disastrous results (e.g. excessive message delays, or system and

user information overloads). Thus, the C3 system, viewed in

terms of how well it provides the information support expected by

the decision-maker, is perceived to degrade exactly when it is

most important that it operate well: when battle information is

flowing and the time available for decision making is short. It

follows, then that there is need to modify the information flow

to match it in real-time to the facilities and the time available

for processing.

1.1.2 The Information Intermediary and the TECCNET System

In formulating the research problem, an approach is

taken that seeks to blend the needs of the users with the
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capabilites of the system. This approach is predicated on the

notion that the development of successful information flow

control techniques must somehow exploit the interrelationship

between the activities of the user and those of the network. As

this approach was refined, it became clear that there was need

for a framework in which these interactions could be expressed

and analyzed.

In designing the appropriate flow control techniques,

one must take into account the following: the decision-maker

alters the way in.which he approaches problems, depending on his

awareness of, and belief in, the potential support to be obtained

from his information flow network. If one attempts to

characterize the commander's reliance on real-time information, a

dilemma is apparent; a dilemma perhaps best illustrated by the

following quotation drawn from a discussion on the evolution of

battle concepts:

"What he needs to know depends to some extent
on what he is attempting to accomplish. What
he attempts to accomplish is guided by his
knowledge of what information can be
provided..."

Major General Jasper A. Welch [WEL80]

In the case of the information flow network, the statement "can

be provided" should be interpreted to include not only what is

available, but also "by what time" and "at what cost". Moreover,

it should be noted that the notion of cost intended here extends

beyond the point of view of the individual user, to include the

community of users affected by his actions. Since the attributes
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of availability, timeliness and cost may be as volatile as the

user's information reqirements, some form of "negotation for

service" between the user and the information system is needed.

-From the research point of view, the introduction of

the notion of flow control for information, as opposed to data,

in the network, requires the development of an- Information

Intermediary between the user and the network. This intermediary

must have access to a specially developed model of the

information network; a model that must incorporate principles

drawn from many current areas of research. The development of

the local status model, involving network, data base, and user

information, requires the flow of control information throughout

the system. It is conceivable that unless extreme care is

exercised in the design, (i.e., drawing on existing network

quantities already available and exploiting local data collected

at the nodes), this flow could become prohibitive, making the

intermediary an undesirable drain on the system resources.

The complexity of the modeling problem is illustrated

by the following example describing a simple request for

information made by the user. Current technologies for managing

information tend to create numerous processing layers between the

user desiring information service and the physical components of

the system that provide that service. A simple question passes,

in general, first through the user/system interface where it may

be expanded into a more complex series of data base queries

appropriate for a given model of the data. The data base system

processes the queries, relying on the communication network to
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interconnect its various processors which may be physically or

logically distributed. For simplicity, processing at each layer

may operate somewhat independently of activities of layers above,

layers below, or elements elsewhere in the system. An

intermediate layer, for example, may predicate its processing on

an assumption that "perfect processing" can be obtained from the

layer below, and that demands from the layer above must be met as

received. While this tends to minimize the interdependency of

processing layers and hence, the amount of detailed control

information passed between them, it is apparent that large

volumes of low level data may be moved through the information

flow network without regard for its current condition. As a

result, by the time the processed answer has reached the user, it

may be of diminished importance. Moreover, since the processing

at each of the layers operates independently, the fact that a

descriptive aggregate response (one that could have been

delivered sooner at less cost) may have been adequate under the

circumstances will not be recognized.

The alternative to this layered approach applied to the

management of information flow networks is not obvious. However,

if the intermediary is to act as an intelligent mechanism for the

control of the information flow, a vertical link between the

natural processing layers as well as horizontal links between the

network elements, must be created. The following key functions

must be performed:

1) monitor the network to determine system
reponse, conditioned on the environment and
the user request issued;
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2) assist the user to reformulate his request
in light of network conditions.

The implication of establishing the vertical link

between processing layers is that the traditional boundaries

between research disciplines must some how be bridged. Moreover,

this must be accomplished in such a way that the exploration of

the subtle interactions between the system elements, and the

various models, algorithms and procedures that characterize each

layer is encouraged. Numerous analytically based approaches to

portions of the information flow problem are under development by

researchers at the MIT Laboratory for Information and Decision

Systems [HUA82],[TEN82]. While these developments appear

promising, it has been recognized that if these research efforts

are to be extended to address interactions between the various

information processes, a consistent framework for analysis across

research areas must be created. (1) In addition, if these

extensions are to contribute toward the development of the flow

control techniques for the intermediary, this framework must be

one that supports both experimentation and model development.

In order to provide such a framework, consistent with

the research issues raised above, the development of a small

expandable software system was required. The Information Flow

Network Testbed (TECCNET: Testbed for Evaluating Command and

Control NETworks), and its design, implementation and use, are

the subject of the report that follows.

(1) Personal communication, Professors W.B.Davenport, Jr. and
R.R.Tenney
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1.2 THE REPORT IN OUTLINE

Section II provides an overview of the TECCNET system,

indicating the goals to be met and a number of the software

design objectives that were established for the project. The

design and implementation considerations, as they applied to the

selection of a software development environment, are presented;

and the structure of TECCNET is described. Some detail on each

of the TECCNET modules is given, suitable for users interested in

either analysis or model and algorithmic development.

In Section III, the initial algorithm, implemented

within the TECCNET framework, is outlined. The formulation of

this algorithm, integrating flow control and routing for data

communicaton networks, is presented; and the considerations

surrounding its distributed implementation are indicated. Two

test situations are described, suggesting the usefulness of

TECCNET as a research tool.

The conclusions are presented in Section IV.
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II. THE TECCNET SYSTEM

2.1 OVERVIEW OF THE SYSTEM

The motivation for the development of an experimental

laboratory to support the C3 research efforts at MIT was

indicated in the previous section. TECCNET was designed in

response to this need, and, beginning in March 1981, a skeleton

system was implemented.

The goals of this effort were the following: The first

was to promote the integration of ideas from several research

areas (e.g, distributed data base, sensor and network management,

information processing and presentation).within a consistent

framework. The second was to improve our understanding, through

experimentation, of the complex interactions between the

distributed command and control network elements, the information

flow network itself, and the environment within which the systems

function. The third, and most important, was to provide a

facility for the development of the Information Intermediary.

In order that TECCNET meet these goals and become an

effective vehicle for our C3 research, a number of design

objectives were established.

1) The testbed should be structured so that it meets

the needs of users with different levels of software and system

expertise. System interface and support software should be

provided to facilitate both modeling and testing activities.
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2) Default models and representations of the system

should be available in order to reduce the effort required to

initiate simple experiments.

3) The software system should be small, with a

controlled plan for expansion, so that it will remain a

manageable tool for project research.

4) The modeling tools available within TECCNET should

provide the capability for representing the asynchronous

interactions and complex protocols that are characteristic of the

models and algorithms likely to be explored in the near future.

The software specifications implied by the preceding

statements encompass a broad range of system functions, in

addition to those ordinarily associated with simulation and

analysis. As a result, substantially different design techniques

were employed in the development of TECCNET from those

customarily applied to the creation of software for algorithmic

and system research. Indeed, the final design of TECCNET was

influenced strongly by the principles applied to the development

of special-purpose computer operating systems. Projects of this

type, with the focus on a comprehensive user/system interface,

are often very ambitious undertakings. It was clear that if such

an approach was to be pursued on a modest scale, its success

would be critically dependent on the selection of a software

development environment. The issues surrounding both the choice

of a computer system and system development language are outlined

in the section that follows.
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2.1.1 Design and Implementation Considerations

The MIT Multics System (1) was selected to host the

testbed for a variety of reasons. It is one of several multiple

user computer facilities with which MIT researchers and students

are both familiar and comfortable. Moreover, the-extensive

Multics network, the links throughout the campus, via dial-up

lines and over networks such as the ARPA net, make Multics

practically, as well as physically, accessible to potential users

of TECCNET.

A more fundamental reason for the selection, from the

point of view of the design of a research tool such as TECCNET,

was derived from the design of Multics itself. The Multics

operating system is layered in such a way that the development of

user-oriented subsystems such as TECCNET is encouraged. As a

general policy PL/I, a language encompassing many of the

characteristics common to problem-oriented languages, was used

whenever possible as the system programming language [COR69].

Tools for controlling the resources of the system and

sophisticated mechanisms for defining the interface between the

user and the system were developed early in the implementation of

the Multics system. These tools were used in a bootstrap fashion

to create much of the basic system software, an approach widely

in use today. These same mechanisms are still in place and are

available to the user who wishes to bypass the standard Multics

(L) Multics stands for MULTiple Information and Computing Service
and is the result of a joint research effort between researchers
at: MIT and Honeywell. [COR72]
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facilities and to access the native internal programming

environment of Multics (consisting of a stack-oriented,

pure-procedure, collection of PL/I procedures). Such users, or

subsystem developers, essentially operate one level deeper within

the system than the majority of users with no loss of service.

In this implementation environment, a subsystem developer,

wishing to know the status of physical processes related to his

activities, is provided with the critical system data structures

that are normally highly protected. Moreover, through the use of

PL/I, one can create direct access to Multics system routines

that control not only internal processes but peripheral devices

as well. These features permit one not only to gain considerable

execution-time control over the system resources, but to do so

from within a general purpose implementation language.

Therefore, one may, in an efficient manner, develop

self-contained system executives that can perform a broad range

of functions tailored to particular users and/or applications.

These characteristics of the Multics environment were

exploited in the design of TECCNET. As a result, the system

support software (such as terminal, interactive data and file

handling routines) were created for TECCNET with a relatively

small investment in both time and effort. PL/I has been used to

implement the basic TECCNET system. For reasons indicated above,

the use of other languages for the executive portion of TECCNET,

although feasible, was not considered seriously. Only in PL/I

could the desired system data structure be replicated readily and

the data required for the system calls be generated in their
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natural format.

The selection of a language for algorithmic as opposed

to system development was not governed by these same

considerations, and therefore was not so straightforward. A

number of languages can be used within the PL/I system

environment, and algorithms implemented in a variety of ways

could be made compatible with the TECCNET system. Ultimately,

the choice of PL/I for the initial implementation within TECCNET

rested on a number of subjective considerations: 1) the features

of PL/I seemed well-matched to the requirements for pointer and

character manipulation and list processing for the class of

algorithms to be considered, 2) PL/I was a stable language system

on Multics (both the FORTRAN and PASCAL compilers were undergoing

substantial upgrades during the design phase of TECCNET), and 3)

future development and enhancements would not be not constrained

by the selection of PL/I; modules developed in PASCAL and

FORTRAN, for example, could be encorporated later if desired.

The actual structure of the TECCNET system, its system

executive and the underlying modules were designed to operate

within this system environment. They are described briefly

below, and in greater detail in the sections that follow.

2.1.2 Structure of TECCNET

The TECCNET system is interactive. Communication

between the user and the TECCNET system takes place through the

Conversational Interface. The organization of the testbed
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beneath the Interface is by blocks separated into basic user

activities, or functions, and structured according the diagram in

Figure 1.

CONVERSATIONAL INTERFACE

l MODEL SCENARIO &
GENERATOR I INPUT GENERATOR

INTERACTIVE NODE**

(User as Information
Node Model Model of Network Customer) Network Element Data
Library Node/ Structures Base

INFORMATION
Informato NETWORK SIMULATOR& Control NTTORS Araffic Statistical

Message
Protocols i

L MIT - Multics Interactive Computer System |Initial Event Generatioess model (simple input/output store forward
Descriptors

node) and one flow ontrol algorithm with baselProcessing Environment

Algorithm Planned for future development.LibraryFigure Structure of TECCNETthe modeIT - Muenvrltics Interactivtse Computeer r Systemfine his

viewnitia version allows selection of only one process model (simple input/output store & forward
node) and one flow control algorithm with baseline message set.

Planned for future development.

Figure 1 Structure of TECCNET

The first of these functions is the specification of

the modeling environment. This permits the user to define his

view of the C3 information flow network by combining models of

the local processing nodes, constraints on the movement of

messages and the algorithms for managing the communication
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network. A library structure has been developed to house these

modeling and algorithmic building blocks; descriptive information

is associated with each entry in the library.

The second function is a data-intensive one in which

the user defines the conditions to be simulated. Three steps are

required:

1) the specification of the network topology,
capacity of the links etc.,

2) the association of nodes with particular
processing models and descriptions of the traffic
between them, and

3) the representation of the environment.

The data are organized for permanent storage and cataloged for

the user.

The third function is the execution of the experiment

based on the combined model and scenario. The execution module

relies on discrete event simulation techniques in order to

capture the asynchronous behavior of the interactions between the

distributed models and algorithms.

2.2 THE CONVERSATIONAL INTERFACE

As depicted in Figure 1, the Conversational Interface

provides the link between the user and the body of the TECCNET

system. Communication is interactive, with commands and

responses entered and displayed at the user's terminal. The

forms of the interaction can be controlled by the user, with the
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display level set according to his familiarity with the system.

A request for a "verbose" conversation produces English-like

messages from TECCNET. Conversations in "terse" mode, on the

other hand, display only short phrases acting as prompts to the

user. A user may switch back and forth between conversational

modes at any time during his TECCNET session; a comparison

between the two forms for the same request is presented in Table

1.

Table 1 Sample TECCNET Interaction:
How to Insert Commands

****USER::
help comment

++++TECCNET:
The comment command is your way of recording comments throughout your

TECCNET session. Any information may be placed in a comment field (i.e.,
difficulties with the system, documentation of the experiment being
performed, etc). If you type comment ,TECCNET will
respond with a special comment prompt (++comment: ?). The cursor will
remain after the ? and you may begin your comment. At the end of a line
hit the carriage return to receive your next comment prompt and enter
the next line of your message. The format is free form, anything may
be included in your text except the error correcting characters (@ and #).
When you are through, merely hit carriage return immediately after
receiving the prompt.

****USER::
terse

++++TECCNET:
Your request for terse output is acknowledged.

****USER::
help comment

++++TECCNET:
If you type comment TECCNET will respond with a special comment

prompt (++comment:?). You may begin typing.

The Conversational Interface is basically command

driven; a feature which gives a user considerable flexibility in

his use of the system. This is a "user active mode", of the

style generally preferred by the designers of interactive
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systems. This preference is due in part to the speed and brevity

which can be achieved in the interaction. More fundamentally

however, it reflects the fact that experienced users can learn to

use the system efficiently without incurring interactive

overhead. If this active mode is used throughout, however, the

burden of choice is placed on the user. Therefore, at selected

points within the TECCNET system, when complex descriptions or

consistent specifications must be solicited from the user, a more

restrictive question and answer (or user passive) format is

employed.

Whenever the user message (****USER::) appears, TECCNET

is awaiting input from the user. An interpreter monitors the

user's entry to distinguish the following: 1) signals for

movement within TECCNET (motion commands), 2) requests for

information (help commands) and 3) specific data entries

(response to system prompts).

Motion commands allow the transfer between the basic

user activities. For example, the command "model" places the

user in a position to define his modeling environment; while the

command "scenario" allows him to specify his test case. Motion

commands need not be executed in any particular order nor given

within the same TECCNET session. Although ultimately the

execution of a given experiment (activated by the "run" command)

requires that all modeling and scenario specifications have been

completed, no constraints are placed on the user as to when these

specifications are made. The final experiment draws on pre-stored

files; files selected from those created during model and
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scenario building activities that have been completed prior to

execution.

Motion commands achieve more for the user than a shift

from one function to another; they generate interrupts for the

TECCNET system. As a result, motion commands can be issued to

escape from even the most detailed level of a tree-structured

question and answer sequence. The effect of this interrupt is to

cancel an activity in progress, such as file creation, data

entry, or execution, before returning control to the user and

repositioning him within TECCNET. When all activities associated

with cancellation have been completed, the user is prompted to

proceed with the appearance of a user cue. The BREAK or ATTN key

generates a pseudo motion command. It creates a system interrupt

with all of the cancellation features indicated above. However,

the user is moved to a temporary transfer point only, at which

time he will be expected to determine what to do next.

A user is supported during his session by a number of

help commands which provide on-line documentation and

clarification, and which may be issued at any time. Unlike

motion commands, help commands have no positional properties, and

are not true interrupts. When a help command is entered, the

information requested is displayed and the user can continue his

session from his current position. If a question had been asked,

the question is repeated; any number of help commands can be

issued. An example of such a command, indicating how to correct

errors in the command line, appears in Table 2.

Help commands can also be used as an on-line training
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Table 2 Help Commands Supporting Error
Correction

****USER::
help error

++++TECCNET:
If you detect an error BEFORE you strike the carriage return key

you may correct it in one of the following ways:
1-Type the AT SIGN (e) to cancel 'he command line up to that point.

Immediately retype the correct line. Thus,if you type
shop@stop

you will get the 'stop' command correctly.
2-n NUMBER SIGNS (#) will cancel the last n characters you typed.

Thus, either of the two lines
sh#top
shop###top

will enter the 'stop' command. Combinations also work;e.g,
shop###toaeshowestop

If you wish to correct an error AFTER you have entered your
command or to interrupt TECCNET, strike the BREAK or ATTN key
and wait for the user cue.

mechanism for the user. An underlying structure for command use

is presumed in such an exercise. A next logical command in the

sequence is suggested at the end of each response; however, this

sequence is in no way compulsory for the user. The help

commands, as indicated previously, are part of the active command

portion of the Conversational Interface, and the parser and

command interpreter support the system in an order-independent

way. A partial sequence of commands and responses, used as an

introduction to the system, is depicted in Table 3; while a

sample TECCNET session appears in Appendix A.

The question and answer format represents the third

type of user interaction. The order of responses here is

critical; a request to the user for a "yes" or "no" answer, for

example, blocks the progress to the next branch of the logic tree

until an acceptable response is given. In this case, the
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progress of the user is controlled by the system, hence the

designation "user passive". To a certain extent, as indicated

above, a blend of active and passive user modes is achieved even

in this interactive form. Despite the fact that specific answers

are required, help commands will be honored at any time by the

system, and the user may issue motion commands to terminate the

tree sequence and regain control.

The parser that supports the question and answer

interaction is, of necessity, more complex than the order

independent interpreter. The order-independent interpreter poses

only two basic questions internally before proceeding or printing

an error message to the user: 1)is the input from the user an

interrupt request (motion or pseudo motion command)?, and 2) if

not, is it a recognizable help command? A negative answer to

both questions leads to the conclusion within the parser that

either 1) the user is confused, in which case he needs a reminder

of what is expected, or 2) he has made an error in typing. A

typical sequence exemplifying the reponses from the parser to an

incorrect command is depicted in Table 4.

The question and answer parser applies the same two

tests as the order-independent interpreter. However, in this

case a negative answer to both internal questions leads to the

hypothesis that the user input is data and must be processed

acording to the rules for the specific question asked. In

processing the data, four basic types of entries are recognized;

character data which may include numbers or symbols, integer

data, floating point data, and binary data (i.e,
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Table 3 Introduction to TECCNET:
A Tutorial

++++TECCNET:

Welcome to the Information Flow Network Testbed (TECCNET).
For information on how to use the system, type:

help
followed by a carriage return. Otherwise, on receiving the
user cue (****USER::) you may type any TECCNET command.

****USER::
help

++++TECCNET:
TECCNET is an interactive testbed which is intended to support

the analysis of a number of information flow related issues. It is
structured to provide user support in three areas:

1) the specification of his modeling environment, selection
of local node models, message protocols and flow control
strategies. (program segment: 'model')

2) the generation of simulation input and scenarios that define
the network / traffic conditions. (program segment: 'scenario')

3) the on-line execution of the simulation experiment (program
segment: 'run').

For information on how to interact with the TECCNET system, the
inexpert user should type: use

****USER::
use

++++TECCNET:
You converse with TECCNET by entering commands and responses from your

terminal. When the user cue (****USER::) appears, it is the indication
that you may begin typing. To signal the computer that you have completed
your entry you MUST strike the carriage return (CR) key. The computer will
not respond until you do.

The commands permit you to move freely within the TECCNET system,
to exercise the various programs, or to receive explanations and
assistance in program selection and data preparation. Occasionally,
a specific response is required. In these instances, you will be
prompted from the terminal before the user cue is given.

Depressing the BREAK or ATTN key at any time will interrupt TECCNET
and return you to a point where you may again enter commands.

The inexpert user should now type:
commands

****USER::
commands

++++TECCNET:
The basic commands for controlling and interacting with the TECCNET

system are organized into three groups:

1) movement within the system:
model: to change modeling environment
scenario: to create scenario data
run: to execute the experiment
stop: to leave the system

2) on-line documentation:
help: brief description of TECCNET
use: outline of interaction modes
help model, help scenario, help run: descriptions of

the TECCNET submodels
use model,use scenario, use run: instructions for their use
help network, help traffic: description of input parameters

3) user support:
help error: how to correct errors in typing
help comment: how to leave comments about the system
comment: comment mechanism
terse: request for brief interactive reporting
verbose: request for complete interactive reporting
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Table 4 An Incorrect Command

****USER::
} run

++++TECCNET:

Your input cannot be interpreted as entered.
If you need a list of active commands, type: commands
If you wish to leave the system; type: stop
Otherwise, retype your command and try again.

****USER::
run

++++TECCNET:
Your request to transfer to the 'run' portion of

TECCNET is being processed.

yes/no,true/false, etc.). If the input satisfies the

specifications of the specific question asked, the appropriate

action is taken and the question/answer sequence continues. If

not, the data format is reprinted, along with the error message

indicated in Table 4. An example of a simple question and

answer sequence, drawn from the simulation portion of TECCNET is

illustrated in Table 5.

2.3 NETWORK MODELING USING TECCNET

Beneath the Conversational Interface are the TECCNET

modules that define the modeling system. Here, as in the

creation of the interactive software, two major concerns

dominated the design process: 1) the desire to understand the

needs of the users (both current and future), and 2) the intent

to structure a system that could be expanded as these needs

change. Unlike the design of the user interface, in which plans
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Table 5 Question and Answer

++++TECCNET:
Please enter the name of the file in which your network

data has been stored. If no file exists or you wish to create
a new file, type: new
You will be prompted by the scenario builder for the data which defines
your network.
If you need clarification, type: thelp network

****USER::
net2

++++TECCNET:
Please enter the name of the file in which your traffic

data has been stored. If no file exists or you wish to create
a new file, type: new
You will be prompted by the scenario builder for the data which defines
your traffic conditions.
If you need clarification, type: !help traffic

****USER::
traf2

++++TECCNET:
Network and Traffic input complete. Would you like it displayed?

Answer yes or no

****USER::
no

++++TECCNET:
Please indicate the desired number of iterations

Enter an integer >0

****USER::
5

for expansion can be met through simple additions to the message

set, the remainder of the TECCNET system required that explicit

provisions for expansion be made as part of the initial

implementation. Capabilities intended to support future

development were incorporated using programming "stubs", or data

structures and empty procedures. This approach was taken in

order to insure a complete functional implementation according to

the design illustrated in Figure I. In the sections that follow,

each of the user functions indicated in this diagram are

described, their current form is presented, and expansion

provisions are indicated.
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2.3.1 Specifying the Model

In order to represent the information flow network, the

user must first initialize the simulation. This entails, as

indicated previously, the specification of the model of the

processing elements at the node, the messages and protocols

defining the information flow and the algorithms for managing the

network. In general, these three specifications are tightly

coupled, bound together by the need for consistency in the

modeling assumptions. Even within these contraints, however,

some flexibility exists in constructing a modeling environment.

Before considering potential modifications, a clear

appreciation of any built-in assumptions must be developed.

Default specifications for the processing model are currently in

place within TECCNET. These defaults permit one type of analysis

of an information flow network by viewing it at its lowest level;

that of the nodes and links comprising a store and forward data

communication network. In this case, therefore, the queueing

theoretic model of the processing elements (particularly the

node) used is extremely simple. It is based on the following key

assumptions: Processing of data packets takes "zero" time

compared to packet queueing and transmission delays. The link

buffers at the nodes are not modeled explicitly; their capacities

are reflected in an effective link capacity that is a fraction of

the physical limit of the line. Moreover, the transmission and

receipt of packets are assumed to be perfect processes.

Characteristics of the message traffic (exclusive of
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volume) also have been specified as defaults. For simplicity,

data packets are assumed to have the same average length, and

only one conversation may be active between a pair of nodes at

any given time. Knowledge of the structure and content of these

data packets is not required in the initial analysis. Control

messages, on the other hand, require explicit treatment of both

structure and content. The header information included is

typical of that contained in the control packets of actual

networks (e.g., source, destination, transmit time, packet class,

etc.). The message content of the control messages is algorithm

specific.

The choice of message protocols completes the message

specification. A first-in-first-out (FIFO) service discipline is

assumed for the treatment of data packets. Both control packets

and acknowledgements, on the other hand, are assumed to have high

priority in the system; implying that either they are sent out

immediately or "piggy-backed" on data packets waiting at the head

of the queue.

The content of the control messages is used to drive

the TECCNET algorithms. The initial network management

algorithm, an outgrowth of an original routing scheme developed

by Gallager [GAL77], was first outlined in its current form by

Golestaani in 1980 [GOL80]. This procedure combines both routing

and flow control mechanisms in a single distributed algorithm.

From the point of view of the future developments of the

information intermediary, as outlined in Section I, the following

features of the algorithm motivated its selection as the initial
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network management tool: 1) the type of marginal delay

information passed between local nodes, and 2) the structure of

priority functions that represent the cost of rejecting flow

between individual node pairs. A description of the flow control

and routing algorithm, and its implementation, will be presented

in Section III.

Even for this simple set of specifications, a number of

modifications can be made that will change the modeling

environment substantially. The most obvious is a alteration to

the flow control algorithm, consistent with existing model and

message specifications. These changes would be cataloged as

additional entries in the flow control algorithm library which

will permit them to be retrieved readily by the user for

inclusion within the simulation. (The initial algorithm is

currently the sole entry in this library and is retrieved

automatically). Less obvious modifications, but still ones

leading to a different set of model specifications, might

include, for example: 1) the incorporation of a non-zero

processing delay for control (as opposed to data) packets, along

with an expanded node processing model, or 2) a change in the

priority associated with the movement of control information.

The approach to simulation building outlined above is

extremely appealing, given the plan for the use of TECCNET to

support C3 research. However, a note of caution regarding the

use of building blocks for specifying the modeling environment is

appropriate. As the scope of the processing models broadens, the

number of options to be considered will grow dramatically.
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Extreme care will be required on the part of the modelers

introducing enchancements to TECCNET to insure that the

selection criteria for initializing the simulation are

straightforward, and that at all times the user can obtain a

clear picture of the modeling assumptions being used.

2.3.2 Scenario and Input Generation

From the specification of the model, one moves to the

creation of the scenario, supported by the second of the major

modules within TECCNET. In general, one assumes that the sequence

of the TECCNET functions is a nested one in the following sense:

the user wishes to specify a model, then test it against several

scenarios, each of which is is used to drive to a number of

experiments. However, one could readily imagine alternative

organizations; ones, for example, calling for the evaluation of

various versions of a model against the same scenario.

Therefore, it was recognized at the outset that any

sequencing assumption in organizing an experiment was a

potentially limiting one. Care was taken, first in the design of

the Conversational Interface-and later in the development of the

Model and Scenario Generators, to support the desired

order-independent processing. The most significant effects of

this need for flexible ordering were seen in the design of the

support mechanisms for scenario specification, particularly in

the areas of the cataloging and storage of the input data. In

the section that follows, these mechanisms will be described in
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parallel with the presentation of the scenario building activity.

Within the scenario specification section of the

system, the following types of input are required: 1) values of

model parameters that define network operating characteristics,

and 2) a description of network structure, traffic, and

environmental conditions. As the modeling of the information

flow network elements becomes more sophisticated, additional

classes of inputs may be added. However, in adding to the list

of variables under control of the Scenario Generator, scenario

inputs (describing the condition of the information flow network)

will continue to be distinguished from those that define the

experiment (such as number of iterations, convergence criteria,

cost function parameters, type of statistics to be collected,

etc.). This distinction is best appreciated by the user who is

attempting to combine "canned" scenarios and model specifications

for use in multiple experiments.

Inputs are solicited from the user and organized into

permanent files. The scenario building process may occur in

small segments, at different TECCNET sessions until a complete

scenario has been obtained and stored in the system. The major

focus of the user support provided during this process is placed

on the preparation of the description of the network topology;

often the most tedious aspect of data entry for network modeling.

The convention was adopted that all network elements,

(nodes and links) are assigned unique, order-independent names by

the user. This eliminates the need to define an element in terms

of a number indicating location in a specified network; a
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position that changes with each addition or deletion. Data

entry, therefore, is equivalent to defining an unordered data

base, containing a superset of the elements (in this case a list

of communication links and input requirements) the user wishes to

use in creating a number of scenarios, and from which subsets may

be extracted without respecification. A number of different

network data files, required to depict the network topology, may

be created from the same data base. Each data base, as well as

each data file, contains descriptive information characterizing

the type of network on file (solicited in free text from the user

at his terminal), and data.

A data base is built by entering descriptive

information characterizing the network elements from the

terminal. Element data, required for the model specification

currently in TECCNET, are relatively simple. A link entry in the

data base, requires a link name, node names of the origin and

destination nodes, and a nominal effective capacity. The units

of this capacity are not supplied, the only requirement is that

capacity and flow data be consistently specified (whether in

bits/second or kbits/second) throughout the experiment. These

data are input according to a simple free format that is

described to the user at his terminal. A typical input line,

with the entries separated by commas, illustrates the link and

node names and capacity information (i.e., L21,NSAM,N24,5.,).

Since the format is simple, with no special data management

characters included, data base files may also be generated by a

computer program, of interest to the user who may wish to
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Any network file, no matter how modest, may, if

desired, function as a data base for network file building

activities. The interactive and storage formats are the same for

both the general data base and specific network data files. In

order to abstract a subnetwork from any network file, a user

merely indicates a set of links to be extracted. He may then

augment this list with link input from the terminal, as

illustrated above, to define a new variation of his scenario. An

example of an interaction of this type is decicted in Table 7.

Similar support is provided for the generation of

traffic files. In this simple modeling exercise, node names

defining conversation origin and destination must be supplied

along with the average desired input rate (in units consistent

with the link capacities). Since the algorithm under study in

initial version of TECCNET uses expected values only, no further

statistical description of the input characteristics is required.

Unit multipliers are generated as placeholders to describe the

potential traffic variations and are attatched as part of the

scenario.

The environment is also specified in terms of unit

multipliers. In this initial version, capacities are assumed to

remain constant (no degradation due to environmental effects),

and nodes and links are assumed to be operational for the

duration of the experiment. Minimal provisions for the

generation of alternative time functions, and probabilistic

descriptions of the input are included; these will be expanded as

the need arises.
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Table 7 A Network Data File

++++TECCNET:
Please enter the name of the file in which your network

data has been stored. If no file exists or you wish to create
a new file, type: new
You will be prompted by the scenario builder for the data which defines
your network.
If you need clarification, type: ihelp network

****USER::
net2

++++TECCNET:
This file already exists, do you wish to treat it as a data base?

Answer yes or no

****USER:
yes

++++TECCNET:

Please indicate the name to be assigned to your new network file.

****USER:
net2a

++++TECCNET:
Indicate a list of link elements to be extracted from this data base

by typing the link names, separated by commas. Terminate your list
by typing: end (CR)

Example: 11,12,142,L60, (CR)
end

****USER:
11,12,13,14,
end

++++TECCNET:
New elements are added using the basic input format.

Network data are entered one link at a time, with a carriage return (CR)
after each link. Four data items are required; a link name, a node
name for the origin node, node name of the destination node (each < 6
characters) and the effective capacity of the link. Data items are
separated by commas, as entered in the following example:

L21, Nsam, N24, 5.,
Input is terminated by typing: end followed by a carraige return (CR).

****USER:
15,n2,n3,15.,
16,n3,n2,20..
end
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2.3.3 Event Generation

Once a model and scenario of interest have been

established, the execution phase of the experiment can be

initiated. Processing order is important within this module, and

the question and answer format is the predominant one in

completing the specification of the experiment. Discrete event

simulation techniques form the basis of the execution software,

which permits the integration of many procedure-driven models and

the represention of asynchronous operation of the elements of a

distributed system.

Three types of events are modeled, designated for

purposes of discussion "spontaneous", "responsive", and

"external". Both spontaneous and responsive events refer to

conditions occurring within the nodes of the information flow

network. External events, on the other hand, refer to situations

arising outside the network which are seen by the system only in

so far as these conditions have a measurable effect on the

real-time capabilities of the system elements. It should be

noted that these external events, although important conceptually

and therefore supported by the event generator, are not required

by the simple models used in the testing of TECCNET, and are

therefore considered part of the future system.

Spontaneous events simulate actions that are based

solely on internal logic operating within the elements

themselves. No direct outside stimulous is required; thus, these

internal events correspond to the decoupled actions of a
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cooperating member of a distributed system. These events may

take many forms depending on the modeling environment that has

been specified. The most straightforward of the spontaneous

events is a scheduling event, such as the initiation of a

particular process at a node. An internal clock or algorithm may

be used to determine the activation time for the "next planned"

execution of an event, and may in turn, be used to schedule

communication with other nodes. A slightly more elaborate form

of scheduling event is a conditioned one, in which some quantity,

observable at the node, is monitored until a threshold is

reached, at which time the event is scheduled. Only the first

type of spontaneous is required to support the models currently

implemented in TECCNET. The primary spontaneous event in this

case is the command from each node to initiate a routing/flow

control update cycle which will govern the flow of traffic to it

from other nodes in the network. These events are scheduled by

the nodes using independent internal clocks, which are not

synchronized. (Synchronization of the internal clocks may be

requested by the user to test specific hypothesis, however, it is

not a general requirement for most of the distributed algorithms

to be examined in the C3 context). The execution of each of the

spontaneous events results, in the case of the current algorithm,

in the generation of a set of "transmit" events simulating the

initial broadcast of the fact that an update cycle has begun. A

second spontaneous event, the generation of a special flow probe

packet, described in Section 3.2, is triggered by the same type

of scheduling mechanism.
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All other events currently implemented are responsive

ones, in that an external stimulous in the form of a message

arriving at a node is required. A node receiving a message from

another node must respond; the nature of that response depends

entirely on the content of the message, his message history, and

the algorithm describing his processing. A node may be waiting,

for example, for the arrival of the first message of a given

type, or the last message from a set of nodes of interest, before

taking some action (i.e., running a process, updating a

parameter, or creating a message for transmission). These

responsive events currently included in TECCNET will be presented

in more detail in Section III where the procedures describing the

distributed routing/flow control algorithm are described.

Before proceeding to the discussion of this particular

algorithm, a few remarks may be appropriate regarding the support

provided within the event generator for model development and

expansion. The first of these is the list management software

which supports the addition and deletion of events from the event

list and drives the simulation according to the next event in

time. This software is generic, new event types can be defined

by a developer interacting with TECCNET, and the corresponding

processing options added to the event list routine. Additional

algorithm development tools are also supplied, based on groups of

logical statements often needed by the algorithm implementor.

These describe events beyond simple message transmision and

reception; examples of these events are given as follows for

both event generation and event monitoring: 1) transmit message
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to adjacent nodes, 2) transmit message to upstream (1) nodes

only, 3) indicate when control packets have been received from

all downstream nodes, or 4) indicate when the first message of a

given type has arrived.

The event generator as currently implemented is only

partially interactive. The user is on-line while the simulation

is running so that he may view the results and possibly decide to

abort the experiment. However, the type of interaction possible

during simulation is limited to output control, honoring requests

to suppress or display output at various levels. For the future,

a true interactive node is envisioned in which the user will be

changing the inputs in real time as though he were a network

customer. This feature appears in the current system as a

software stub.

(1) "upstream" is defined as the set of nodes from which a node
receives packets for a given destination, "downstream" are those
nodes to which those packets are sent.

35



III. THE NETWORK FLOW CONTROL ALGORITHM

3.1 SPECIFICATION OF THE ALGORITHM

In the preceding section the TECCNET modeling system

was presented, with emphasis on its structure and how that

structure has been implemented to support C3 system research. In

the process, the initial modeling environment with its built-in

assumptions regarding the type of experiment to be performed was

described. This description presumed that a low-level view of

the information flow network would be taken and that the insights

gained from the network experiments would be used to develop

local models of the network suitable for inclusion as part of the

Information Intermediary. It was clear that within this

framework, a broad class of techniques for managing the flow of

information through the network could be studied. Of particular

interest were those which could be implemented in a distributed

manner and for which the control actions and decisions taken by

the individual nodes required limited local information.

The initial algorithm included in TECCNET is one

proposed by Golestaani in his Ph.D. thesis [GOL80]. Using this

approach, flow control and routing are treated together, leading

to a flow control algorithm with two components: a quasi-static

portion and a dynamic portion. The quasi-static formulation is

an outgrowth of an earlier work by Gallager [GAL77], a

distributed algorithm for determining optimal routing in a

communication network. In Golestaani's extension, the
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combination of optimal routing and flow control expresses the

following conflicting network management objectives: one

attempts to reduce congestion in the network while minimizing the

amount of offered traffic that is rejected by that network. In

the remainder of Section 3.1, this approach is described and, at

selected points, the specifics of the TECCNET implementation are

indicated.

A convex optimization problem is formulated in which

short-term average information on network utilization is used to

allocate both maximum data rates for each user session (viewed as

source/destination pairs) and the optimum routes through the

network for information flowing within it. The description of

the.formulation requires.the following definitions: The network

structure is indicated by 1) a set of nodes {N} in which each of

the elements is indexed by an integer (i) and 2) a set of links

{LJ connecting these nodes, each of which is designated by a pair

of indices, km (denoting a source node (k) and a destination node

(m)). Each link is completely characterized, for purposes of the

simple model required by the algorithm and supported by TECCNET,

in terms of an effective capacity,Ckm , (1) and the flow carried,

fkm A set of commodities is specified to represent active

conversations between individual node pairs. Each of these

commodities (designated by indices ij to denote the source and

destination nodes) is described by a desired input rate,rd '. W

(1) Effective capacity represents the maximum link flow that can
be handled realistically by the link,-given the number of buffers
at the nodes (at both the transmitting and receiving ends).
Typically this flow level will be slightly less than the physical
capacity of the line.
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which the flow control scheme attempts to satisfy. The rate

allocated to each session is indicated by rij, and may take on

values up to and including the desired.

The allowable transmission rate for each session is

determined through consideration of user priorities, fairness,

<iand the expected level of congestion throughout the network. A

balance among these considerations is achieved through the

appropriate selection of cost functions used in the optimization.

The interpretation to be placed on each of the cost functions and

the mathematical motivation for the requirement that they be

twice differentiable and convex are described elsewhere [GAL80]

[GOL803. In this discussion it is sufficient to indicate the

following: Two costs are included; the first, that of

congestion, is associated with each individual link in the

network. This cost of congestion is represented by an increasing

function of the volume of flow on that link and, in this

instance, has been chosen to be:

f
g(f km (3.1)

km Ckm-fkm

The second cost, that of user dissatisfaction, is associated with

each user session originating between node pairs. It is

represented by a decreasing function of the allocated data rates,

e(rij), and may take many forms.

The individual link and session costs are combined to

form an overall network cost given by:
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J = g(fkm) + e(r ij) (3.'2)
k,m i,j

The allowable session rates and desired routes through the

network are chosen to minimize this overall cost. The conditions

for optimality [GAL80] depend only on -incremental link costs

(indicated in equation 3.3) and a priority function, -e'(rij),

associated with each conversation.

g(f -Ckm (3.3)
km) (Ckmfkm)2

A desirable form for the priority function (and the one

implemented in TECCNET) is given by:

-e'(r) = sj (3.4)

The scaling factor, s, is a parameter which is used by the

TECCNET simulation to represent a global balance between the

concerns for network congestion and rejected flow. The parameter

a.ij is a measure of a typical rate for session (ij), while bij is

a measure of its importance. [GAL80] [BER81]

It is convenient in constructing the algorithm to add a

fictitious link to the network for each active commodity.

Structurally, these links connect origin/destination pairs

(referred to as ij pairs) and "carry" rejected flow only (up to

the desired input rate,rdj , indicated above). The marginal

cost associated with flow on this link is then equal to the value

of the priority function given in equation 3.4.
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Expressed in this way, the minimization of the cost

function (3.2) is a quasi-static routing problem for which a

variety of distributed algorithms have been developed. [GAL77]

[BER81] [SEG79]. Readers are referred to [GAL77] and [GOL80] for

a formal description of the particular algorithm selected for

implementation. A brief presentation is included as part of this

discussion for completeness.

Two phases of the algorithm are required to achieve a

complete update of the routing variables. The first phase is a

"protocol" phase, in which the nodes pass selected network status

information through the network according to established

procedures. The second is a "commit" phase, in which nodes

implement the desired changes in routing and input control and

inform the other nodes in the network.

Within TECCNET, a "one-at-a-time" update policy is

used. That is, each destination node j initiates its own update

cycle-- one which governs explicitly only the flow associated

with conversations directed to it-- independently from the other

nodes. (1) An update cycle begins with the following steps:

Protocol Phase

1) Node j broadcasts an initiation message containing

time information to all adjacent nodes (nodes connected directly

to it). This broadcast is a spontaneous event as described in

(1) While the actions are independent, we are reminded that the
status information on which they are based is not. It is the
total flow carried on the finite capacity links that is reflected
in the marginal cost information transmitted through the network.
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Section 2.3, triggered assording to an internal clock at each

node. The interval between updates is controlled by the user.

2) Each node k knows the identities of nodes to which

it currently routes flow destined for j (designated the set of

all downstream nodes {M}). After receiving the FIRST protocol

message initiated by node j, the node begins monitoring its

protocol traffic and waits until it has received a protocol

message from all downstream nodes. These protocol messages,

received from each node in {M}, contain the following

information:

. the value of the initiation time from node j

· the value of the marginal cost, (dJ/drmj),
associated with flow between node m in {M} and the
destination j.

a flag indicating whether, given the current
status, node m should remain on the path from node
k to node j. (This mechanism, a "blocked flag", is
a required to prevent the formation of loops in
the path logic between iterations [GAL77]).

.estimates of the average delay per packet,Tmj ,
for packets traveling between node m and j. This
estimate is required in the calculations of
windows which are used by the dynamic portion of
the flow control scheme. The specifics are given
later.

3) Each node k then updates the marginal cost from

itself to node j according to the following:

Drkj = km (j ) g (fkm) + r j

where jkm(j) represents the fraction of total flow at node k

(including all desired inputs) routed to node j along link km,
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and g' is defined according to equations 3.3 and 3.4. The

average delay, Tkj, is updated in a similar manner, combining

locally generated estimates of the delay between k and nodes in

{M} with estimates received, Tmj. A protocol message, containing

these estimates is sent to all neighbors NOT in {M-}.

4) When node k has received a protocol packet from all

adjacent nodes, it can infer that the protocol phase upstream

from it is complete. Node k then sends protocol information,

which acts as a confirmation of this fact, to all nodes in {M}.

5) Finally, when node j receives protocol confirmation

from all upstream neighbors, all nodes have updated their

estimates of network conditions in response to the update

request. Node j need not wait for communication from the

remaining adjacent nodes (those from whom it receives no flow)

before initiating the commit phase.

Commit phase

1) Node j broadcasts the update signal to all adjacent

nodes.

2) Node k waits only for first receipt of an update

signal, at which point it:

. updates routing variables for all outgoing
links, including the fictitious link. (In the
current implementation, this update is performed
in the simplest manner [GAL77]. More elaborate
procedures can be implemented as indicated in.
[BER81]).

. updates window size as defined below

. applies new values and progates flow
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The information required to support each of these '

calculations is translated into an appropriate control message.

These messages are used to generate both transmit and receive

events in the simulation. These events are associated with

specific nodes, according to the logic outlined above, and are

scheduled in time using the expected processing and transmission

delays for individual links.

The reference, in the preceding description, to window

updates and the passing of delay information through the network

reflects the requirements of the dynamic part of the flow control

algorithm. Dynamic flow control has the function of admitting or

rejecting individual packets into the network so that the

allowable rates, as determined by the optimization algorithm, can

be met and fluctuations in arrivals and buffer occupancies can be

smoothed out. Various suggestions for the computation of the

window sizes, the mechanism for achieving this control on

individual ij sessions, have been made [GAL80] [GOL80]. In

developing the algorithm, one begins with a relationship for

determining the window size, wij , given by:

Wi [iT + eji] (3.6)

where r is the average packet length, eji is the time required

for an acknowledgement from j to i. Tij is a revised estimate

of the average per packet delay between i and j; the superscript

+ indicates that it is based on delay observed after the new

control variables have been instituted, and new flows have
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resulted. If this computation were attempted directly, passing

all required flow and routing information in the same distributed

manner given above, three times the control information

(effectively three complete cycles) would be required to achive

one complete update [GOL80], clearly not a desirable result if

one is trying to conserve network resources. An approximation is

made in this implementation which permits window sizes to be

updated as the new allocations of the routing variables are

determined. Values of Tij are computed during the protocol phase

of the algorithm, and continue to be modified between protocol

phases using timing information contained in the network

acknowledgements. When the new value of rij is determined, the

window is computed using the following:

Wij = + ij (3.7)

The use of Tij as an approximation for Tij has been justified on

the basis that the update policy has been implemented

asynchronously in TECCNET. As a result, the effect of routing

changes, applied to traffic other than that destined for j, is

likely to have taken effect. These changes are also likely to

have been reflected in the estimate of Tij.

Implementation considerations are outlined in the

section that follows. Experience with the implementation in

which this approximation is used is described in Section 3.3.

3.2 IMPLEMENTATION ISSUES
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The blend of dynamic and quasi-static techniques into a

single scheme poses an implementation challenge. As indicated

above, the windowing procedure is intended to govern the entry of

individual packets into the network. As a result, this mechanism

is most easily simulated packet-by-packet, using discrete-event

simulation techniques. The steps which comprise a single

protocol/commit cycle of the quasi-static algorithm are also

driven by the movement of individual packets (albeit control

instead of data) in the network. Therefore, even if the data

packets are not considered explicitly in generating the flow

estimates required during the optimization, a sequence of

discrete events still represents the most straightforward

translation of the quasi-static portion of the algorithm into a

form for evaluation.

There are many well documented techniques for applying

discrete event simulation to the analysis of networks, and

elaborate languages have been developed to suport their use

[ORE80]. Although not designed expressly for the purpose of

packet-by-packet network simulation, TECCNET can be used to

represent the network at this level of detail by virtue of its

discrete event execution structure. However whether one uses

TECCNET or some other simulation tool, considerations of cost and

manageablilty of the experiment must be addressed.

In general the data and control packet simulations

require the explicit treatment of large volumes of traffic,

simulating the movement of packets in some detail through the
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network. In the case of this particular joint routing and flow

control algorithm, an open simulation would require that the data

packets be 1) generated for each session according to the

appropriate distribution, 2) injected into the network at the

source node each time a session window became available, 3)

transported through the network along with the other data,

control and acknowledgement traffic, 4) queued at intermediate

points, and 5) ultimately removed at the destination. For a

network of modest size, tens of thousands of individual transmit,

receive, or acknowledgement events may be generated during each

complete update cycle (protocol/commit phases) for the overall

network. Morever, if Monte Carlo analysis is required (due, for

example to the event structure, disturbances in the system, or

interactions modeled) the execution of enough cycles to give

confidence in the experimental results would add considerably to

the computational burden..

It may be argued that the full packet simulation yields

improved fidelity and modeling flexibility over various forms of

analytical models. Depending on such things as the complexity of

the delay model implemented, the detail desired in the

representation of the procedures at the nodes for responding to

specific messages, and the approach required for estimating flow

at the nodes, this argument may be more or less valid. However,

it is important to recall that one of the significant objectives

in developing TECCNET as a research tool is to admit the

possibility of including the user as an interactive agent in the

experiment. Clearly, therefore, the implementation approach
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taken must be such that interactive execution is practical. Thus

an alternative to the full packet simulation was sought which

would retain the strengths of the discrete event formulation in

capturing the interactions between the control variables and the

flow in .the network.

In considering the quasi-static portion of the

algorithm, the modeling approach was drawn from analytical

results obtained using similar distributed routing algorithms.

One experiment in particular suggested that, under certain

conditions, a reasonable comparison could be made between the

results of the analytical and discrete-event simulations of the

same algorithm, despite the fact that the analytical simulation

assumed no correlation between events at the various nodes

[CAI80]. With these results in mind, the following technique was

used for the test cases described in Section 3.3.

Control packets that drive the algorithm are modeled

explicitly, scheduling events according to the estimates of the

single link delays incurred and the logic of the protocol/commit

sequences indicated above. Control acknowledgements, specified

as part of the algorithm, are also modeled explicitly. The bulk

of the traffic, however, is represented in an aggregate way only.

Specially designed pseudo-packets (designated "flow probes)" are

created as an artifice of the simulation. These packets are

added to the event stream at the appropriate times to carry

information that permits flow estimates to be updated at a node.

As these probes move through the network, they reflect the

various changes in flows that are the result of modifications in



routing or inputs. These packets function as aggregate data

tokens, and in the limit, if the time between packets were random

and small, the effect of these probes would be roughly equivalent

to the packet-by-packet model. The user determines the frequency

of flow probe initiation at a node, however, special care is

taken to see that probes follow control packets issued during

protocol and commit phases of the algorithm. The benefits

derived from this approach are seen in reduced execution time for

the simulation; potential losses in accuracy in the results are

expected to be tolerable.

Of greater concern was the implementation of the

windowing scheme. It is clear that this form of dynamic flow

control requires something approximating discrete packet tokens

in order to be successful; e.g, the fewer acknowledgements that

are received at the source (as a result of increased round trip

delay), the fewer packets will be admitted through the windows

into the network. The probes, carrying flow information, have

been used to provide information by which these fluctuations can

be simulated, even though discrete data packets are not

represented. Each probe carries a time tag. With the return of

each probe acknowledgement, the actual delay incurred, tij,

associated with a portion, i, of the total flow transmitted from

node i to node j can be determined. The effective delay

associated with injections at the particular node can be updated

recursively using the following weighted expression:

Tij = h +1-i) Tij + tij] -h (3.8)
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where h can take on values between 0 and 1. If the window size,

wij, remains fixed between update cycles, and the value of Tij,

computed according to equation 3.8, is used in equation 3.7, an

effective injection rate, rij, can be determined each time a flow

probe is acknowledged. This effective rate is then used to

generate flow information transmitted by future flow probe

messages.

In the section that follows, these modeling tools are

exercised using two different networks and specifications of user

sessions.

3.3 EXPERIENCE WITH THE SYSTEM -- AN EXAMPLE

With the completion of the basic TECCNET system, and

the implementation of the initial flow control algorithm, any of

a number of experiments (whether leading to the ultimate

development of the Information Intermediary or directed toward

the exploration of the algorithms themselves) can be designed and

carried out. In preparation for the use of the system by various

researchers with different backgrounds, a number of exercises

were conducted to test the system from model definition through

execution. Some preliminary results obtained with two of the

sample networks are described in the section that follows.

3.3.1 Case 1
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The first test was performed using a small (5 node 12

link) network, selected for simplicity to verify the accuracy of

the event sequences representing the algorithm. The structure of

2nn

Figure 2 Network Topology: Case 1

this network is depicted in Figure 2, with the nodes and links

indicated by labels nl to n5 and 11 to 112 respectively. The

effective capacity for each of the links is the same, set at 100

kbits/second. A single value of .1 kbits for average packet

length was used; additional values can be chosen to reflect

differences between the various control packets and the average

data packet. Control and acknowledgement packets were assumed,

as indicated in Section 2.3, to have high priority in the system.

Thus they experienced transmission delay only.- The desired input

rates in kbits/second for each of the 13 individual sessions are
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indicated in Table 8. The priority function for these

conversations have aij set equal to the desired rate indicated in

Table 8, and bij set to 2.0.

Table 8 Desired Input Rates: Case 1

Source Destination Desired rij
ni n2 40.000
ni n3 50.000
ni n4 40.000
n2 nI 50.000
n2 n4 40.000
n5 n2 50.000
n5 n3 40.000
n3 ni 40.000
n3 n2 50.000
n3 n5 40.000
n4 ni 40.000
n4 n5 40.000
n4 n3 40.000

The algorithm is initialized by setting routing

variables such that all traffic is moved along a shortest path to

its destination. Thus, for example, traffic from node n4 to node

nl (using the initial routing) would traverse only links 110 and

14. The injection levels are initialized at 25% of the desired

input, subject to the constraint that the initial allocation does

not cause any link to carry flow of more than 95% of its

effective capacity (In the event that this constraint is violated

on initialization, the actual starting injections are reduced by

a factor of 2 until a feasible initial condition is reached).

Once the algorithm is running, this constraint no longer applies.

The initial flows on the links for this test case are

depicted in Table 9. With this simple network of uniform
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Table 9 Initial Flows on the Links

Link Flow Link Flow Link Flow

11 22.500 12 22.500 13 10.000
14 10.000 15 12.500 16 32.500
18 20.000 19 20.000 110 30.000
111 12.500 112 20.000

capacity links and similar conversations, the initial shortest

path routing for each conversation is not far from optimal.

Minor routing adjustments during the optimization process

reflected the fact that alternative attractive paths existed.

Only small modifications were required to equalize the costs due

to differences in individual conversation requirements. Thus,

although there was some interaction between the routing and flow

control variables, most of the action, during the update cycles

simulated, was concerned with the admission of additional flow

to the network. Within the first three cycles, most of these

changes had taken place, stabilizing within eight cycles of the

algorithm. The input rates allocated to conversations at the

end of eight cycles are presented in Table 10; to be compared

with those desired (Table 8). The flows on the links at this

point (to be compared with those in Table 9) are given in Table

11.

It should be noted that this represents an extremely

low network utilization, approximately 30.4%. This is due to the

fact that a large faction of the desired flow was rejected
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Table 10 Allocated Input Rates after
Eight Cycles

Source Destination Ideal riJ
nl n2 34.925
ni n3 11.445
ni n4 9.830
n2 ni 35.390
n2 n4 10.872
n5 n2 36.407
n5 n3 11.680
n3 nl 9.465
n3 n2 32.273
n3 n5 8.566
n4 nl 11.153
n4 n5 34.562
n4 n3 36.638

Table 11 Flows after Eight Cycles

Link Flow Link Flow Link Flow

11 46.359 12 45.280 13 9.830
14 12.768 15 24.252 16 52.420
17 6.885 18 41.719 19 47.231
110 19.577 111 43.038 112 14.948

(approximately 50%). This reflects the relative balance between

the priority functions (according to which rejected flow is

penalized) and the cost of network congestion. In this case, the

penalty for rejection is relatively low, because the scaling

factor, s, for the priority function indicted in equation 3.4

was set at .1.

The scaling factor was then raised to .5 and .75 in two

successive runs. The percent of desired flow admitted to the
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network increased from 50% to 56% and 57% respectively; while the

network utilization rose from 30.4% to 36% and 37% for the two

variations. This was achieved with little change in delay, a

fact which is not surprising when one compares link flows for

these variations (Tables 12a and 12b) with those depicted in

Table 11. '

Table 12a Link Flows After Eight Cycles,
s=.5

Link Flow Link Flow Link Flow

11 50.693 12 45.580 13 16.141
14 22.186 15 36.977 16 58.472
17 11.582 18 45.207 19 52.425
110 33.200 111 44.690 112 26.619

Table 12b Link Flows After Eight Cycles,
s=.75

Link Flow Link Flow Link Flow

11 50.644 12 45.888 13 18.363
14 21.810 15 39.609 16 55.477
17 14.853 18 42.592 19 54.609
110 35.123 111 46.747 112 25.923

3.3.2 Case 2

A second test problem was constructed using the same

assignment technique for creating the conversation priority
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functions. A different topology was specified, with non-uniform

link capacities. This network, with its 8 nodes and 22 links, is

Z9(5O)

aim)ns

Figure 3 Network Topology and Link
Capacities: Case 2

depicted in Figure 3. (1) The desired input rates for each

conversation appear in Table 13, while the initial link flows are

depicted in Table 14.

The same experiment was run as described above, with s

taking values from .1 to .75. Similar results were observed in

terms of increases in flow to the network with little effect on

(1) Associated with each link name in Figure 3 is a number in
parenthesis, (i.e. (5)) which is a measure of the relative
magnitude of the link capacities. The actual effective link
capacities, in kbits/second, used in the simulation can be
determined by multiplying these link numbers by 10.55 6r~



Table 13 Desired Input Rates: Case 2

Source Destination Desired rij
ni n2 30.000
ni n6 20.000
nl n8 40.000
ni n5 30.000
n2 n6 30.000
n2 n4 30.000
n6 n2 30.000
n6 n7 40.000
n8 ni 40.000
n8 n3 40.000
n8 n7 40.000
n3 n2 30.000
n3 n8 40.000
n3 n4 20.000
n3 n5 30.000
n4 n2 30.000
n4 n5 40.000
n4 n7 40.000
n5 nl 30.000
n5 n4 40.000
n7 n6 40.000
n7 n8 40.000
n7 n4 40.000

Table 14 Initial Flows on the Links
(Case 2)

Link Flow Link Flow Link Flow

11 15.000 12 20.000 13 10.000
14 7.500 15 7.500 16 15.000
17 20.000 18 10.000 19 7.500
110 17.500 111 10.000 112 10.000
113 7.500 114 15.000 115 7.500
116 10.000 117 10.000 118 10.000
119 10.000 120 10.000 121 10.000
122 10.000

delay. Comparison between the network injections allocated under

two different s values (depicted in Tables 15a and 15b) yields an

interesting result. The lower rates assigned to long distance

conversations such as the session n2 to n4 or n2 to n6 are not

surprising. But it is interesting to note that it is the
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Table 15a Allocated Inputs after Eight Cycles,
S=.l

Source Destination Ideal rij
ni n2 36.567
ni n6 35.262
ni n8 19.099
ni n5 6.348
n2 n6 4.795
n2 n4 4.774
n6 n2 5.904
n6 n7 19.096
n8 ni 19.099
n8 n3 19.099
n8 n7 19.058
n3 n2 36.491
n3 n8 19.037
n3 n4 32.050
n3 n5 7.907
n4 n2 6.464
n4 n5 36.028
n4 n7 19.098
n5 ni 4.656
n5 n4 38.202
n7 n6 19.032
n7 n8 19.099
n7 n4 19.099

Figure 15b Allocated Inputs after Eight Cycles,
s=. 5

Source Destination Ideal rij
ni n2 34.854.
nl n6 31.466
nl n8 19.098
ni n5 10.897
n2 n6 6.874
n2 n4 6.841
n6 n2 8.746
n6 n7 19.099
n8 ni 19.098
n8 n3 19.098
n8 n7 18.218
n3 n2 34.819
n3 n8 18.221
n3 n4 29.739
n3 n5 13.968
n4 n2 9.597
n4 n5 34.477
n4 n7 19.099
n5 ni 6.559
n5 n4 38.200
n7 n6 18.205
n7 n8 19.098
n7 n4 19.098
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conversations with the lower allocations which show.the greatest

improvements as s is increased from .1 to .5.

As indicated at the outset, the preceding discussion is

not intended as a definitive evaluation of the flow control

scheme or the implementation of the algorithm in TECCNET. Rather

it is intended to suggest that a preliminary version of the

TECCNET system is operational--one which should support the type

of experiments necessary 1) to contribute to the development of

local models of the network suitable for the Information

Intermediary and 2) to represent the interactions in the

information flow networks, inherent in C3 systems.
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IV. CONCLUSIONS

In the preceding sections, the design, development and

testing of a new research tool, created especially to support C3

system research, was presented. From the outset, the major

concern that guided this activity was how the TECCNET system

could best support the development of the concepts and models

comprising the Information Intermediary.

The design issues for the system were indeed complex,

since the potential contributions from a variety of ongoing

research activities had to be considered. A consistent framework

had to be developed for integrating the relevant notions from

research efforts addressing the user/system interface, the

generation and management of the information, and the control of

the underlying communication networks. Moreover, this had to be

accomplished in way that would encourage the exploration of the

subtle interactions between the system elements, and the various

models, algorithms and procedures that characterize information

flow problems in C3.

Preliminary experience with the initial version of the

TECCNET system has indicated that these objectives are being met.

The interactive format and modular structure of the system appear

appropriate to the needs of users with different levels of

software and system expertise who will be participating in this

activity in the future. The modeling tools incorporated in the

system provide the capability for representing the asynchronous

interactions and complex protocols inherent in the models and
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algorithms 'likely to be explored. In addition, the presence of a

default modeling'environment will allow the pursuit of several

lines of inquiry in parallel, each of which is expected to

contribute from a different perspective to the overall

development.of the Information Intermediary. It is anticipated

that extensive use of the TECCNET system will lead as a

by-product to modifications and improvements in the system. As

these enhancements are made, it is hoped that the scope of the

information flow modeling can continue to increase.

The ultimate success of the approach taken can be

measured, on the one hand, by how well the interaction between

information strategies and the system parameters can be

represented and how readily models of the Information

Intermediary can be incorporated and tested. However, as the

system is augmented, broader criteria should apply to reflect how

effectively the use of TECCNET improves our understanding of the

interactions between the distributed command and control network

elements, the information flow network itself, and the

environment within which the systems function.
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++++TECCNET:

Welcome to the Information Flow Network Testbed (TECCNET).
For information on how to use the system, type:

help
followed by a carriage return. Otherwise, on receiving thd
user cue (****USER::) you may type any TECCNET command.

****USER::
help

++++TECCNET:
TECCNET is an interactive testbed which is intended to support

the analysis of a number of information flow related issues. It is
structured to provide user support in three areas:

1) the specification of his modeling environment, selection
of local node models, message protocols and flow control
strategies. (program segment: 'model')

2) the generation of simulation input and scenarios that define
the network / traffic conditions. (program segment: 'scenario')

3) the on-line execution of the simulation experiment (program
segment: 'run').

For information on how to interact with the TECCNET system, the
inexpert user should type: use

****USER::
use

++++TECCNET:
You converse with TECCNET by entering commands and responses from your

terminal. When the user cue (****USER::) appears, it is the indication
that you may begin typing. To signal the computer that you have completed
your entry you MUST strike the carriage return (CR) key. The computer will
not respond until you do.

The commands permit you to move freely within the TECCNET system,
to exercise the various programs, or to receive explanations and
assistance i.n program selection and data preparation. Occasionally,
a specific response is required. In these instances, you will be
prompted from the terminal before the user cue is given.

Depressing the BREAK or ATTN key at any time will interrupt TECCNET
and return you to a point where you may again enter commands.

The inexpert user should now type:
commands

****USER::
commands -

++++TECCNET:
The basic commands for controlling and interacting with the TECCNET

system are organized into three groups:



1) movement within the system:
model: to change modeling environment
scenario: to create scenario data
run: to execute the experiment
stop: to leave the system

2) on-line documentation:
help: brief description of TECCNET
use: outline of interaction modes
help model, help scenario, help run: descriptions of

the TECCNET submodels
use model,use scenario, use run: instructions for their use
help network, help traffic: description of input parameters

3) user support:
help error: how to correct errors in typing
help comment: how to leave comments about the system
comment: comment mechanism
terse: request for brief interactive reporting
verbose: request for complete interactive reporting

****USER::
help comment

++++TECCNET:
The comment command is your way of recording comments throughout your

TECCNET session. Any information may be placed in a comment field (i.e.,
difficulties with the system, documentation of the experiment being
performed, etc). If you type comment ,TECCNET will
respond with a special comment prompt (++comment: ?). The cursor will
remain after the ? and you may begin your comment. At the end of a line
hit the carriage return to receive your next comment prompt and enter
the next line of your message. The format is free form, anything may
be included in your text except the error correcting characters (@ and #).
When you are through, merely hit carriage return immediately after
receiving the prompt.

****USER::
comment

++++TECCNET:
If you strike the carriage return immediately after receiving
a comment prompt, you will terminate your message to us.

++comment ? This is a test case for a 5 node, 12 link network.
++comment ? Uniform capacities will be used on all links.
++comment ?

****USER::
rin

++++TECCNET:

Your input cannot be interpreted as entered.
If you need a list of active commands, type: commands
If you wish to leave the system; type: stop
Otherwise, retype your command and try again.

****USER::
help error

++++TECCNET:



If you detect an error BEFORE you strike the carriage return key
you may correct it in one of the following ways:

1-Type the AT SIGN (0) to cancel the command line up to that point.
Immediately retype the correct line. Thus,if you type

shopostop
you will get the 'stop' command correctly.

2-n NUMBER SIGNS (#) will cancel the last n characters you typed.
Thus, either of the two lines

sh#top
shop###top

will enter the 'stop' command. Combinations also work;e.g,
shop###toaoshowostop

If you wish to correct an error AFTER you have entered your
command or to interrupt TECCNET, strike the BREAK or ATTN key
and wait for the user cue.

****USER::
run

++++TECCNET:
Your request to transfer to the 'run' portion of

TECCNET is being processed.

++++TECCNET:
Please enter the name of the file in which your network

data has been stored. If no file exists or you wish to create
a new file, type: new
You will be prompted by the scenario builder for the data which defines
your network.
If you need clarification, type: Ihelp network

****USER::
net2

++++TECCNET:
Please enter the name of the file in which your traffic

data has been stored. If no file exists or you wish to create
a new file, type: new
You will be prompted by the scenario builder for the data which defines
your traffic conditions.
If you need clarification, type: !help traffic

****USER::
terse

++++TECCNET:
Your request for terse output is acknowledged.
Traffic filename?

****USER::
traf2

++++TECCNET:
Network and Traffic input complete. Would you like it displayed?

Answer yes or no

****USER::
yes



Network Topology

Link Name Origin Node Destination Capacity

11 ni n2 100.
12 n2 nI 100.
13 ni n5 100.
14 n5 ni 100.
15 n2 n3 100.
16 n3 n2 100.
17 n3 n4 100.
18 n4 n3 100.
19 n4 n5 100.
110 n5 n4 100.
111 n5 n2 100.
112 n2 n5 100.

Desired Input Rates

Source Destination Desired rij
ni n2 40.000
ni n3 50.000
ni n4 40.000
n2 ni 50.000
n2 n4 40.000
n5 n2 50.000
n5 n3 40.000
n3 nl 40.000
n3 n2 50.000
n3 n5 40.000
n4 ni 40.000
n4 n5 40.000
n4 n3 40.000

++++TECCNET:
Please indicate the desired number of iterations

Enter an Integer >0

****USER::
50

SYSTEM SNAPSHOT at Time = .000

Objective function based on Ideal injections = 1122.748
on Effective injections = 1122.748

Network Injections

Source Destination Ideal rij Effective rij
ni n2 10.000 10.000
ni n3 12.500 12.500
nl n4 10.000 10.000
n2 ni 12.500 12.500
n2 n4 10.000 10.000
n5 n2 12.500 12.500
n5 n3 10.000 10.000
n3 nI 10.000 10.000
n3 n2 12.500 12.500
n3 n5 10.000 10.000



n4 ni 10.000 10.000
n4 n5 10.000 10.000
n4 n3 10.000 10.000

Link Flows

Link Flow Link Flow Link Flow

11 22.500 12 22.500 13 10.000
14 10.000 15 12.500 16 32.500
18 20.000 19 20.000 110 30.000
111 12.500 112 20.000

++++TECCNET:
Do you wish to see updates in r and phi at individual nodes during
the next iteration? Answer yes or no.

****USER::
no

SYSTEM SNAPSHOT at Time = 1.999

Objective function based on Ideal injections = 728.503
on Effective injections = 728.503

Network Injections

Source Destination Ideal rtj Effective rij
ni n2 15.987 15.987
ni n3 18.475 18.475
ni n4 15.975 15.975
n2 ni 18.487 18.487
n2 n4 15.979 15.979
n5 n2 18.490 18.490
n5 n3 15.978 15.978
n3 ni 15.228 15.228
n3 n2 18.480 18.480
n3 n5 15.964 15.964
n4 ni 15.979 15.979
n4 n5 15.986 15.986
n4 n3 15.988 15.988

Link Flows

Link Flow Link Flow Link Flow

11 34.463 12 33.716 13 15.975
14 15.979 15 31.160 16 49.674
17 5.986 18 25.269 19 31.965
110 35.249 111 25.188 112 25.956

++++TECCNET:
Do you wish to see updates in r and phi at individual nodes during
the next iteration? Answer yes or no.

****USER::
no



SYSTEM SNAPSHOT at Time = 3.999

Objective function based on Ideal injections = 637.452
on Effective Injections = 590.230

Network Injections

Source Destination Ideal rij Effective rij
ni n2 29.067 18.317
ni n3 18.280 18.466
nl n4 16.063 16.063
n2 nI 35.790 21.213
n2 n4 17.003 17.003
n5 n2 33.677 21.218
n5 n3 16.767 16.767
n3 ni 12.452 17.514
n3 n2 28.494 21.197
n3 n5 12.968 18.274
n4 nI 15.151 18.302
n4 n5 29.969 18.315
n4 n3 36.022 36.935

Link Flows

Link Flow Link Flow Link Flow

11 36.597 12 48.157 13 16.063
14 17.194 15 35.054 16 51.462
17 10.128 18 44.101 19 35.510
110 33.060 111 29.908 112 25.584

++++TECCNET:
Do you wish to see updates in r and phi at Individual nodes during
the next iteration? Answer yes or no.

****USER::

++++TECCNET:
You may now enter any TECCNET command.

****USER::
comment

++++TECCNET:
If you strike the carriage return immediately after receiving
a comment prompt, you will terminate your message to us.

++comment ? should add additional links and change the experiment
++comment ? _back to a definition stage.
++comment ?

****USER::
stop

++++TECCNET:
You are now leaving the TECCNET system.


